Gelfand Theory of Pseudo Differential Operators and Hypoelliptic Operators
نویسندگان
چکیده
منابع مشابه
Semilinear Hypoelliptic Differential Operators with Multiple Characteristics
In this paper we consider the regularity of solutions of semilinear differential equations principal parts of which consist of linear polynomial operators constructed from real vector fields. Based on the study of fine properties of the principal linear parts we then obtain the regularity of solutions of the nonlinear equations. Some results obtained in this article are also new in the frame of...
متن کاملAutomorphic Pseudo-differential Operators
For recent developments of this work in the classical direction, especially to generalizing to modular groups acting on higher dimensional spaces, see papers of Min Ho Lee: http://www.math.uni.edu/ lee/pub.html. He has, for example, developed the Hilbert modular case. Also, Olav Richter’s work on Rankin-Cohen brackets: http://www.math.unt.edu/ richter/. Work of Conley on 1/2-integral weight: ht...
متن کاملproperties of M−hyoellipticity for pseudo differential operators
In this paper we study properties of symbols such that these belong to class of symbols sitting insideSm ρ,φ that we shall introduce as the following. So for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of M−hypoelliptic pseudodifferential operators for which define base on this class of symbols. Also we consider maxi...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولPseudo-differential Operators on Fractals
We define and study pseudo-differential operators on a class of fractals that include the post-critically finite self-similar sets and Sierpinski carpets. Using the sub-Gaussian estimates of the heat operator we prove that our operators have kernels that decay and, in the constant coefficient case, are smooth off the diagonal. Our analysis can be extended to product of fractals. While our resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1971
ISSN: 0002-9947
DOI: 10.2307/1995571